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Abstract
Innate and adaptive immune systems have a crucial role in initiating and progressing 
some	pregnancy	disorders	such	as	preeclampsia	(PE),	which	is	one	of	the	pregnancy-	
specific disorders that could result in neonatal and maternal morbidity and mortality. 
The dysregulation of the spiral artery and inadequate trophoblast invasion lead to 
PE	symptoms	through	producing	various	inflammatory	cytokines	and	anti-	angiogenic	
factors from the placenta. T lymphocytes play a special role in the epithelium and 
stroma	of	the	human	endometrium.	CD4+	T	helper	(Th)	cells,	Th1/Th2,	and	Th17/T	
regulatory	 (Treg)	 balance	 mainly	 contribute	 to	 the	 establishment	 of	 a	 pregnancy-	
favorable environment. This review examined the dysregulation of some cytokines 
produced	from	T	cells,	the	dysregulation	of	the	transcription	factors	of	Th	cells,	the	
expression	of	chemokine	receptors	on	T	cells,	as	well	as	the	effects	of	some	factors	
including	vitamin	D	on	the	activity	of	T	cells,	and	finally,	the	dysregulation	of	various	
miRNAs	related	to	T	cells,	which	could	cause	PE.
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1  |  INTRODUC TION

Adaptive	and	 innate	 immune	systems	have	a	major	 role	 in	 the	 ini-
tiation and development of different types of pregnancy disorders 
such	as	preeclampsia	(PE).1	Approximately,	5%-	8%	of	pregnant	peo-
ple	suffer	from	PE	worldwide.	PE	 is	one	of	the	pregnancy-	specific	
disorders which could result in neonatal and maternal morbidity and 
mortality.2 It is diagnosed by different symptoms such as thrombo-
cytopenia,	pulmonary	edema,	renal	insufficiency,	proteinuria,	visual	
or	 cerebral	 symptoms,	 and	 the	presence	of	de	novo	hypertension	
after the 20th gestational week.3,4	PE	can	be	categorized	into	early-		
(before	34	weeks)	and	late-	onset	(after	34	weeks)	types.	The	dysreg-
ulation of the spiral artery and inadequate trophoblast invasion lead 
to	the	symptoms	of	PE	by	producing	various	inflammatory	cytokines	
and	anti-	angiogenic	factors	from	the	placenta.5	In	recent	years,	re-
search has expanded on the disorders of different subtypes of T lym-
phocyte	cells,	the	dysregulation	of	releasing	cytokines	from	T	cells,	
and	the	expression	of	microRNAs	(miRNAs)	related	to	T	cells	in	PE.	
This review also focuses on the advances in our knowledge about 
the	role	of	T	lymphocytes	in	the	pathogenesis	of	PE.

2  |  LYMPHOCY TES AND PREGNANCY

Lymphocytes	 are	 the	 largest	 resident	 immune	 cell	 population	
found in the decidualized endometrium and include uterine or 
decidual	 natural	 killer	 (NK)	 cells	 and	 the	 T-	cell	 subsets,	 namely	
CD4	 T	 helper	 1	 (TH1),	 Th2	 CD8,	 T	 regulatory	 (Treg),	 and	 Th17	
cells. T lymphocytes are located in the decidual stroma and glan-
dular epithelium where they play a critical role in the establish-
ment of a favorable pregnancy environment.6 Th1/Th2 and Th17/
Treg cell balance have an essential part in the establishment of a 
pregnancy-	favorable	 environment.	 During	 the	 peri-	implantation	
period,	a	controlled	shift	toward	Th1	responses	is	involved	in	im-
mune surveillance and avoids the excessive invasion of tropho-
blast.7,8	 After	 the	 placental	 implantation,	 making	 a	 shift	 toward	
Th2 is essential for the preservation and development of a normal 
embryo,	the	suppression	of	Th17	and	Th1	cells	by	releasing	inter-
leukin	 (IL)-	13	 and	 IL-	4,	 respectively,	 and	 an	 increase	 in	 allograft	
tolerance.8,9	 Additionally,	 Treg	 cells	 are	 the	main	 factors	 for	 im-
munological	tolerance,	the	acceptance	of	the	fetus	by	the	mother's	
immune	system,	and	embryo	implantation.	Peripheral	and	decidual	
Treg cells increase during normal pregnancy.10,11 Tregs exert sup-
pressive	 functions	 through	 different	 mechanisms,	 including	 the	
modulation	of	 antigen	presentation,	 the	 cytolysis	 of	 target	 cells,	
and the secretion of inhibiting cytokines.12,13 Treg cells prevent 
the operation and proliferation of Th17 and Th1 cells via different 
mechanisms,	including	programmed	cell	death	protein	1	(PD-	1)	and	
the	Ca	+	influx-	clapin-	caspase	1	pathway.	Over	the	years,	studies	
have shown that different subsets of Tregs have various effects on 
pregnancy. Zenclussen et al revealed the exact type of thymus Treg 
(tTreg)	cells	that	are	vital	for	the	establishment	of	pregnancy.14 In 
this	regard,	the	activity	of	induced	Treg	(iTregs)	is	demonstrated	in	

the late fertility stages.15	During	pregnancy,	Th17	cells	make	 im-
munity	against	extracellular	pathogens	and	induce	NK	cell	activa-
tion.8	IL-	17	promotes	tissue	invasion	and	progesterone	secretion.16 
Low	levels	of	Th17	cells	are	observed	during	normal	pregnancy	as	
compared	to	 infertile	women,	and	Th17	cell	 levels	do	not	vary	 in	
fertility	processes.	In	addition,	the	level	of	Th17	in	the	decidual	is	
higher compared to the peripheral blood.17,18	According	to	a	study,	
the placental trophoblast through making a shift toward Th2 re-
sponses and inhibition of Th17 cells leads to the maintenance of 
pregnancy.19

3  |  Th1 AND Th2 CELL FUNC TION AND 
REL ATED FAC TORS IN PE

Preeclampsia	patients	exhibit	 chronic	 inflammation.20 The balance 
between	the	functions	of	Th1/Th2	changes	toward	a	Th1-	dominated	
phenotype,	and	a	high	level	of	IL-	12	can	cause	the	severity	of	PE.21 
In	 this	 respect,	 the	 ratio	 of	 Th1/Th2	 cells	 elevates	 as	well.22 Th1 
cells have a critical role in systematic inflammation by secreting the 
amounts	of	tumor	necrosis	factor-	alpha	(TNF-	α),	interferon-	gamma	
(IFN-	γ),	 IL-	1β,	 and	 IL-	12.	 The	domination	of	Th1	 responses	 can	 in-
duce	chronic	inflammatory	reactions	in	the	fetal-	maternal	interface,	
endothelial	 dysfunction,	 and	 the	 impairment	 of	 placentation.23,24 
Some studies represented the transfusion of Th1 cells into normal 
pregnant	mice	that	demonstrated	PE	symptoms	including	proteinu-
ria,	blood	pressure,	inflammation	of	the	decidua,	and	changes	in	kid-
ney	functions.	However,	the	transfer	of	Th1	cells	into	non-	pregnant	
mice does not induce any alterations in renal function and blood 
pressure.22

T-	bet	and	GATA	binding	protein	3	(GATA-	3)	as	the	transcription	
factors of Th1 and Th2 cells regulate the expression of Th1 and Th2 
cytokine,	respectively,	and	have	critical	roles	 in	the	differentiation	
of Th cells.25	According	to	a	study,	higher	and	lower	percentages	of	
T-	bet	and	GATA-	3	were	found	in	peripheral	and	decidual	T	cells	in	PE	
patients,	respectively,	as	compared	to	normal	pregnant.25,26

4  |  Treg AND Th17 CELL FUNC TION AND 
REL ATED FAC TORS IN PE

It has been shown that number of Treg cells is decreased and their 
function	impaired	in	peripheral	blood	and	decidua	in	PE	patients.27,28 
There	 is	 an	 altered	 prevalence	 of	 Treg	 subtypes	 in	 PE	 compared	
with healthy pregnant. The prevalence of fully functional effector 
Tregs	(CD4+	FoxP3hi	CD45RA−)	is	reduced,	while	naïve	Tregs	(CD4+ 
FoxP3+	 CD45RA+)	 remain	 to	 be	 unaffected.29 Feger et al30 de-
scribed	HLA-	G+ Treg cell subsets. These cells do not express Foxp3 
and	CD25	molecules,	are	of	hypo-	proliferative	and	thymic-	derived	
types,	 and	 are	 detected	 in	HIV-	1	 infection,	multiple	 sclerosis,	 and	
transplantation.31	 The	 frequency	of	CD4+	HLA-	G+,	CD8+	HLA-	G+,	
and	CD4+	CD25	+	CD127low	peripheral	cells	in	the	PE	group	is	lower	
compared to a healthy pregnant group.32	According	to	these	results,	
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decreased frequencies of regulatory T cells can lead to immuno-
logical	maladaptation	and	inadequate	tolerance	to	the	fetus	in	PE.33 
Higher	 numbers	 of	 CD4+	 CD25high	 FoxP3+	 CD279+ identified as 
exhausted	Tregs	were	found	in	peripheral	T	cells	in	PE	patients.34,35 
The	exhausted	T	cell	is	a	state	of	T-	cell	dysfunction	that	decreases	
the strength of the immune system in controlling infection and can-
cer.36	CD279	(PD-	1)	expression	has	been	considered	as	a	marker	of	
T-	cell	 exhaustion.37	 PD-	1	 expression	 on	 T	 cells	 is	 associated	with	
restricted proliferative capacity and decreased suppression of the 
immune system.29	Higher	expression	of	PD-	1	and	interactions	with	
its	ligand	(PDL-	1)	generate	a	strong	co-	inhibitory	signal	in	exhausted	
T cells.36	Thereby,	this	molecule	may	involve	in	reducing	the	number	
and	 function	 of	 Tregs	 in	 PE.34	During	 pregnancy,	 the	PD-	1/PDL-	1	
pathway	plays	a	major	 role	 in	maintaining	 feto-	maternal	 tolerance	
by regulating the immune response.38	According	to	Zhang	et	al,	the	
PD-	1/PD-	L1	pathway	contributes	to	the	Treg/Th17	balance	during	
pregnancy by promoting Treg cell generation and preventing Th17 
proliferation.	However,	PD-	1/PD-	L1	pathway	dysfunction	may	exert	
a	role	in	the	Treg/Th17	imbalance	in	peripheral	blood	and	decidua,	
leading	 to	 the	 development	 of	 PE.39	 The	 Treg-	related	 factors	 are	
summarized in Table 1.

Th17	 cells	 are	 involved	 in	 pro-	inflammatory	 and	 autoimmune	
diseases	 by	 secreting	 IL-	17	 cytokine.40 Studies have confirmed 
that	 Th17	 cell	 populations	 and	 their	 cytokines	 are	 elevated	 in	 PE	
women.41	Moreover,	both	TH17	and	IL-	17	increase	in	reduced	uter-
ine	perfusion	pressure	 (RUPP)	 rats.42	The	dysregulation	 in	NK	cell	
subtypes,	 agonistic	 autoantibodies	 to	 the	 ANGII	 type	 1	 receptor	
(AT1-	AA),	 inflammatory	 cytokines,	 and	 placental	 oxidative	 stress	

are	 the	main	 factors	 for	proteinuria,	high	blood	pressure,	 and	 low	
birthweight	in	PE	patients.43	As	reported	by	a	study,	separating	and	
transferring	RUPP	Th17	to	normal	pregnant	(NP)	rats	can	induce	the	
levels	of	 inflammatory	 cytokines	 such	as	 IL-	17,	 IL-	6,	 IFN-	γ,	 TNF-	α,	
cytolytic	NK	functions,	markers	of	blood	pressure,	placenta	perfo-
rin,	and	AT1-	AA	production,	and	placenta	oxidative	stress	including	
reactive oxygen species.44	Moreover,	 Travis	 et	 al	 investigated	 the	
role	of	 IL-	17,	which	 is	secreted	by	Th17,	 in	hypertension	and	preg-
nant	rats.	They	concluded	that	IL-	17	infusion	into	a	subset	of	NP	rats	
can	induce	the	activation	of	NK	cells,	the	plasma	level	of	TNF-	α,	the	
reduction of placental vascular endothelial growth factor and fetal 
weight,	 the	production	of	 a	high	 level	of	granzymes	A	and	B,	 and	
finally,	the	impairment	of	the	vascular	reactivity	of	uterine	arteries	
and	PE	defects.45	The	Th17-	related	factors	are	presented	in	Table	1.

Orphan nuclear receptor γt	(RORγt)	and	forkhead	box	p3	(Foxp3)	
are specific transcription factors that are involved in the production 
of Th17 and Treg cells.46	 Eghbal-	fard	 et	 al46 approved an increas-
ing	 Th17/Treg	 ratio	 in	 PE	 by	 detecting	 the	 percentages	 of	 CD4+	
CD25+	 CD127-		 and	 CD4+	 IL-	17+	 cells.	 Additionally,	 the	 mRNA	
level of RORγt increased while that of Foxp3 decreased in periph-
eral	and	decidual	T	cells	in	the	PE	patients	as	compared	to	healthy	
pregnant.25,46	An	imbalance	between	Treg	and	Th17	cells	can	induce	
chronic	 inflammation	 in	PE.33	Moreover,	 the	mRNA	 levels	and	 the	
secretion of inflammatory cytokines in peripheral blood mononu-
clear	cells	 (eg,	 IL-	6,	 IL-	23,	and	 IL-	17)	are	meaningfully	higher	 in	PE	
women.	 On	 the	 other	 hand,	 anti-	inflammatory	 cytokines	 such	 as	
IL-	10	and	 transforming	growth	 factor-	beta	 (TGF-	β)	 are	 remarkably	
lower	in	PE.46

Dysregulation of 
various factors in PE Function

Th1 Inducing	chronic	inflammatory	reactions	in	the	fetal-	maternal	interface	
by	secreting	the	amounts	of	TNF-	α,	IFN-	γ,	IL-	1β,	and	IL-	12

T-	bet,	GATA-	3 High	expression	of	T-	bet	and	low	expression	of	GATA-	3	may	lead	to	
Th1/Th2 imbalances toward to Th1

PD-	1/PD-	L1 PD-	1/PD-	L1	pathway	dysfunction	may	exert	a	role	in	the	Treg/Th17	
imbalance in peripheral blood and decidua

IL-	17 IL-	17	is	found	by	Th17	and	elevation	in	angiotensin	II	type	I	receptor	
(AT1-	AA)	production

Th17 Inducing	cytolytic	NK	cell's	function,	placenta	perforin	production,	IFN-	
γ,	and	TNF-	α cytokines

RORγt,	Foxp3 High	expression	of	RORγt and low expression of Foxp3 may lead to 
Th17/Treg imbalances toward to Th17

iNKT Have	an	augmented	cytotoxic	potential	along	with	exhibiting	Th1	
dominant profile

CXCL16 Interaction	with	CXCR6	receptors	on	T	cells	and	subsequently	
inflammation

IFN-	γ Inducing	the	expression	of	CXCL9	chemokines	which	are	involved	in	
inflammatory responses

25	(OH)	vitD Increasing	IL-	6	and	decreasing	TGF-	β secretion from Th1 and Treg

Adenosine Th1/Th2 balances toward Th1 and subsequently hypertension

DCR3 Suppressing Th2 cells function and Th1/Th2 imbalances

TA B L E  1 Dysregulation	of	T-	cell	
subsets	and	related	factors	in	PE
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5  |  NK T CELL S IN PE

These	cells	are	a	subset	of	lymphocytes	that	express	NK	cell	recep-
tors	and	can	be	classified	into	the	invariant	NKT	(iNKT)	cells	with	the	
T-	cell	receptor	(TCR)	alpha-	chain	(TCRα)	or	variant	NKT	(vNKT)	cells	
without	the	expression	of	the	invariant	T-	cell	receptor	(TCR)	alpha-	
chain.1	NKT	cells	can	control	 the	 immune	 response	 in	decidua	and	
peripheral	blood	through	the	production	of	Th1-	type	cytokines	(IFN-	
γ)	and	Th2-	type	cytokines	(IL-	4).24	In	the	decidua,	NKT	cells	can	regu-
late Th1/Th2 balance and are involved in maintaining pregnancy.1	An	
alteration	in	the	balance	of	NK	cell	activating	and	inhibitory	receptors	
on	peripheral	iNKT	cells	in	women	with	PE	indicates	a	lower	chance	
of inhibitory signal transduction as compared with healthy pregnan-
cies.47	Thereby,	 the	 frequency	of	activated	peripheral	 iNKT	cells	 is	
fully	 higher	 in	 PE	women,	 and	 they	 have	 an	 augmented	 cytotoxic	
potential	along	with	exhibiting	Th1	dominant	profile,	suggesting	the	
important	role	of	iNKT	cells	in	making	a	systemic	inflammation.24,48

6  |  CHEMOKINES AND PE

Chemokines	 are	 a	 superfamily	 of	 chemotactic	 cytokines	 that	 have	
an important impact on the regulation of leukocyte and lymphocyte 
transport from the bone into the inflammation sites. The dysregula-
tion of chemokine expression has been attributed to some diseases 
such	 as	 PE,	 as	 well	 as	 habitual	 and	 spontaneous	 abortions.49	 CXC	
chemokine	 ligand	 (CXCL)	16	 is	 a	 plasma	membrane	 chemokine	 and	
consists	of	a	short	cytoplasmic	tail,	a	single	transmembrane	helix,	and	
a	chemokine	domain	with	a	glycosylated	mucin-	like	stalk.50	CXCL16	
are	expressed	on	 smooth	muscle	cells,	 endothelial	 cells,	 fibroblasts,	
dendritic	cells,	B	and	T	cells,	macrophages,	and	platelets.51 Some of 
the	 functions	of	CXCL16	 include	being	a	chemo-	attractant	 for	cells	
carrying	chemokine	receptor	CXCR6,	which	is	known	as	Bonzo,	induc-
ing	cell	migration	into	inflammatory	areas,	and	promoting	matrix	met-
alloproteinases,	which	cause	the	degradation	of	the	matrix.52	Previous	
research	reported	that	CXCL16	expression	increases	in	inflammatory	
diseases,	endothelial	dysfunction,	and	hepatic	damages.53 Increased 
CXCL16	expression	has	been	shown	to	be	associated	with	inflamma-
tion	and	is	induced	by	inflammatory	mediators	such	as	TNF-	α	and	IFN-	
γ. Tok et al54	showed	that	the	serum	level	of	CXCL16	is	meaningfully	
higher	in	PE	patients,	and	there	exists	a	positive	correlation	between	
CXCL16	and	renal	and	hepatic	damages	in	PE.	Elevated	CXCL16	lev-
els could be related to systemic inflammation which is involved in the 
pathogenesis	 of	 PE.	 This	 study	 suggested	 that	 the	CXCL16/CXCR6	
axis	can	be	a	predicting	marker	for	the	development	of	PE.

Interferon-	gamma	 is	 a	 pro-	inflammatory	 cytokine	 produced	 by	
immune	cells	such	as	Th1	cells,	CD8+	lymphocytes,	and	NK	cells.55 
It	 is	well	 known	 that	 IFN-	γ is highly expressed in serum/plasma of 
PE.56	IFN-	γ	can	induce	CXCL9	and	CXCL10	chemokines,	which	have	
a major impact on the recruitment of immune cells into infected/
inflamed organs.57	CXCL9	and	CXCL10	exhibit	anti-	angiogenic	 fea-
tures.58	It	has	been	shown	that	in	the	plasma	of	PE	women	the	lev-
els	of	CXCL9	and	CXCL10	are	increased,	in	line	with	the	increase	in	

IFN-	γ.59	Similarly	CXCL9	has	been	shown	to	increase	in	the	PE	pla-
centa	while	CXCL10	was	unaffected.60

Collectively,	 these	 findings	 suggest	 that	 the	 CXC	 chemokines	
may	 contribute	 to	 the	 inflammatory	 pathogenesis	 of	 PE	 and	may	
present good therapeutic targets.

7  |  OTHER FAC TORS AND PE

7.1  |  Vitamin D

Vitamin D is a critical modulator of vital biological events includ-
ing	 immune	 function,	 hormone	 secretion,	 cell	 differentiation,	 and	
proliferation.61	It	also	has	a	role	in	the	bone	synthesis,	metabolism,	
and	the	regulation	of	phosphor-	calcium	metabolism.62 The vitamin 
D	receptor	 is	expressed	on	some	immune	cell	members	(Th17	and	
Treg).63 Vitamin D impedes the lymphocyte proliferation and cyto-
toxic	cell	stimulation	by	alloantigen	in	the	maternal-	fetal	interface	64 
and	meaningfully	decreases	inflammation	in	PE	65 by the expansion 
of Treg and Th2 responses.66	Furthermore,	vitamin	D	inhibits	the	IL-	6	
secretion	 and	 increases	 the	 expression	 of	 TGF-	β.67,68	 As	 reported	
by	some	studies,	the	level	of	plasma	25	(OH)	D	is	 lower	in	women	
with	PE	as	compared	with	normal	pregnancy.69-	71	Moreover,	a	lower	
level	of	vitamin	D	can	be	a	risk	factor	for	severe	PE.72-	74	According	to	
Muyayalo	et	al66,	lower	levels	of	vitamin	D	in	PE	patients	can	cause	
Treg/Th17	cell	imbalance	and	promotion	of	IL-	6	levels.

7.2  |  Adenosine

Adenosine	is	produced	in	reaction	to	hypoxia	and	ischemia	in	the	pla-
centa and is a degradative metabolic agent of adenine nucleotides.75 
In	 addition,	 it	 has	 several	 roles	 in	 different	 regulatory	 processes	
(eg,	the	regulation	of	local	blood	flow	and	metabolic	rate)	and	has	a	
strong influence on shifting the Th1/Th2 balance toward Th2 domi-
nance	and	immune-	triggered	cytokine	production.76	Consequently,	
adenosine	can	have	a	protective	role	at	the	maternal-	fetal	interface.	
However,	plasma	adenosine	concentrations	remarkably	 increase	 in	
PE	women	77 and can involve in the regulation of Th1/Th2 ratio im-
balance based on the severity of hypertension.78

7.3  |  Decoy receptor 3

Decoy	 receptor	 3	 (DCR3;	 Figure	 1)	 is	 introduced	 as	 tumor	 necrosis	
factor	receptor	superfamily	member	6B	(TNFRSF6B)/TR6/M68	and	a	
soluble receptor that can neutralize inflammation and apoptosis induc-
ers	 such	as	TNF-	like	molecule	1A	 (TL1A/TNFSF15),	Fas	 ligand	 (Fasl/
CD95L/TNFSF6),	and	LIGHT	(TNFSF14).79,80	The	expression	of	DCR3	
on	tumor	cells	can	lead	to	evasion	from	immune-	cytotoxic	attack	by	pre-
venting	the	LIGHT-	mediated	apoptosis	and	the	Fas	ligand.81	According	
to	one	study,	DCR3	can	bind	to	TL1A	on	immune	cells	and	lead	to	T-	cell	
differentiation,	favoring	Th1	and	Th17	cells.82	Moreover,	DCR3	skews	
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macrophages	to	the	M2	phenotype	and	regulates	dendritic	cell	differ-
entiation,	resulting	in	a	Th1-	suppressing	effect	and	Th2	polarization.83 
Transgenic	mice	who	highly	express	DCR3	show	attenuated	Th2	dif-
ferentiation.	DCR3	has	different	 roles	 in	decreasing	major	histocom-
patibility	complex	class	II	expression	and	dampening	T-	cell	response	to	
alloantigen	via	interfering	with	the	LIGHT-	TR2/HVEM	interaction.84 In 
pregnancy,	DCR3	expression	is	detected	in	preeclamptic	placentas	and	
is	elevated	in	the	excessive	inflammatory	activities	of	PE.85	Ching	Yeh	
et al86	revealed	that	the	plasma	level	of	DCR3	in	PE	patients	was	mean-
ingfully	lower	than	that	of	the	normal	pregnant	group,	suggesting	that	
a	potential	involvement	of	DCR3	in	normal	pregnancy	and	the	reduced	
levels	of	DCR3	may	be	related	to	immune	dysregulation	in	PE.

8  |  MicroRNA s AND THEIR FUNC TION IN 
PE

Similar	to	short	endogenous	regulatory	RNAs,	miRNAs	are	approxi-
mately	 22-	24	 nucleotides	 long.87,88 Their main function is to pair 

with the 3′-	untranslated	region	of	target	mRNA	and	regulate	gene	
translation.	Further,	miRNAs	exert	a	key	role	in	different	physiologi-
cal	and	pathological	disorders,	and	the	evidence	demonstrates	that	
miRNAs	are	important	regulators	in	placental	development	and	the	
immune environment.89-	91	Moreover,	miRNAs	 are	 highly	 stable	 in	
the	plasma,	serum,	and	urine,	offering	the	possibility	of	miRNA	to	di-
agnostic or prognostic markers for different illnesses. Dysregulation 
in	 the	expression	of	miRNA	or	abnormal	miRNA	 levels	 is	 found	 in	
placentas from women who have pregnancy complications such as 
PE,	 recurrent	miscarriage,	 and	 fetal	 growth	 restriction,	which	 can	
affect	cell	cycle,	migration,	adhesion,	and	antiapoptotic	survival.92,93 
Differential	expression	of	miRNA	has	been	revealed	in	PE	patients.	
As	reported	in	previous	research,	the	expression	of	miR-	181a,	miR-	
210,	 miR-	155,	 miR-	182,	 miR-	196,	 miR-	195,	 and	 miR-	26	 increases	
while	 that	 of	 miR-	144	 and	 miR-	223	 represents	 a	 decrease.93 The 
modification	of	miRNAs	 is	 critical	 in	 the	expansion	of	PE	because	
of their effect on the regulation of immune response and inflamma-
tion.94	In	recent	years,	the	association	between	alterations	in	miRNA	
expression and the function of T lymphocytes or the secretion of 

F I G U R E  1 Function	of	different	subtypes	of	Th	cells	in	PE.	Note.	TH:	T	helper;	PE:	Preeclampsia;	Treg:	T	regulatory;	IL:	interleukin;	
TNF-	α:	tumor	necrosis	factor-	alpha;	NK:	Natural	killer.	A,	Adenosine	has	a	strong	influence	on	shifting	the	Th1/Th2	balance	toward	Th2.	
B,	Transfusion	can	elevate	the	risk	of	PE	by	increasing	IL-	6,	TNF-	α,	NK	cells,	and	AT1-	AA.	C,	The	interactions	between	vitamin	D	and	its	
receptors	in	the	cytoplasm	of	Treg	and	Th17	cells	can	release	TGF-	β,	block	IL-	6	cytokines,	and	suppress	PE	development.	D,	Decoy	receptor	
3	can	bind	to	TL1A	on	immune	cells	and	lead	to	T-	cell	differentiation,	favoring	Th1	and	Th17	cells,	and	finally,	causing	PE

 16000897, 2021, 5, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/aji.13475 by Institut Pasteur, W

iley O
nline L

ibrary on [20/08/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



6 of 11  |     ZOLFAGHARI et AL.

different cytokines has been an interesting subject of research. 
The	dysregulation	of	miRNA-	related	T	 lymphocytes	 is	provided	 in	
Table 2.

8.1  |  Dysregulation of miRNAs related to T 
lymphocytes in PE

8.1.1  |  miR-	106b/miR-	326

miR-	106b	 induces	 cell	 cycle	 progression,	 modulates	 cell	 cycle-	
related	proteins,	and	controls	cell	proliferation.95 The upregulation 
of	 miR-	106b	 targets	 and	 suppresses	 two	 pivotal	 effectors	 of	 the	
TGF-	β	signaling	pathway,	including	cyclin-	dependent	kinase	inhibitor	
1A	(CDKN1A/p21)	and	BCL2L11/Bim.96	TGF-	β is necessary for the 
maturation	and	differentiation	of	Treg	cells,	and	any	dysregulation	in	
this	miRNA	may	alter	the	activity	of	Treg	cells.96	Moreover,	miR-	326	
affects	the	differentiation	of	Th17	lymphocytes	by	preventing	Ets-	1	
activity.97	It	has	been	proven	that	Ets-	1	has	an	important	role	in	the	
modulation of Treg and Th17 cell responses.98	Eghbal-	fard	et	al46 re-
ported	that	the	expression	of	miR-	106b	and	miR-	326	is	upregulated	
in	PE	women,	and	the	dysregulation	of	these	two	miRNAs	can	affect	
the	Th17/Treg	balance	and	make	a	shift	toward	Th17	response	in	PE	
patients.

8.1.2  |  miR-	106_363	cluster

The	cluster	of	miR-	106_363	is	located	on	chromosome	X.	A	previous	
study	revealed	that	the	upregulation	of	miR-	20a,	miR-	17,	and	miR-	
106a can lead to macrophage activation and increase Th1 cells as 
compared with Th2 cells.99	Thus,	this	miRNA	cluster	is	expressed	at	
the	intermediate	levels	in	the	Th2,	the	highest	level	in	the	Th1,	and	
the lowest level in Th17 cells.100	The	expression	of	miR-	363-	3p,	miR-	
106a,	and	miR-	18b	can	decrease	IL-	17	gene	expression	and	prevent	
the	production	and	activity	of	IL-	17a	and	Th17,	respectively.	miR-	20b	

and	miR-	182	are	the	other	members	of	the	miR-	106_363	cluster	and	
target RORγt and the signal transducer and the activator of tran-
scription	 3	 (STAT3),	which	 are	 Th17	 cell	 transcription	 factors	 and	
suppress Th17 cells and experimental autoimmune encephalitis.101 
Therefore,	the	expression	of	the	cluster	of	miR-	106_363	can	impede	
Th17-	mediated	inflammations	such	as	chronic	disease,	asthma,	and	
PE.	Therefore,	using	miR-	18b,	miR-	106a,	and	miR-	363-	3p	may	be	a	
therapeutic	approach	for	Th17	cell-	mediated	preeclampsia.

8.1.3  |  miR-	210

miR-	210	has	been	implicated	in	several	pathophysiological	pathways	
such	as	cancer,	apoptosis,	and	oxidative	stress.102,103	Recently,	it	has	
been	found	that	miR-	210	levels	meaningfully	increase	in	the	placen-
tal	and	plasma-	derived	samples	from	PE	patients.104 Trophoblast cell 
migration	 and	 invasion	 reduce	 following	 miR-	210	 overexpression	
in	 PE.93	 Further,	 this	 component	 causes	 reductions	 in	 STAT6	 and	
IL-	4	 levels	 that	 contribute	 to	 the	 expansion	of	PE.105	Additionally,	
the	overexpression	of	miRNA-	210	 can	 suppress	 the	expression	of	
Foxp3 and impair Treg cell functions.106	The	expression	of	miR-	210,	
which	targets	Foxp3	and	 inhibits	Treg	cell	 functions,	 is	high	 in	the	
PE	placenta.107

8.1.4  |  miR-	155

miR-	155	is	processed	from	the	human	nonprotein	coding	exon	3	of	
B-	cell	 integration	cluster	RNA	108 and is effectively upregulated in 
T	and	B	cells	as	a	response	to	antigen	stimulation.109,110	In	addition,	
this	miRNA	could	be	 induced	by	Toll-	like	 receptor	 ligation	 in	den-
dritic cells and macrophages.111,112	miR-	155	is	extremely	expressed	
in	Treg	cells	 and	 is	 essential	 for	 the	production	of	normal	 thymic-	
derived Treg cells.113	Altered	miR-	155	has	been	reported	in	adverse	
pregnancy	outcomes	including	recurrent	miscarriage,	recurrent	im-
plantation	failure,	and	preeclampsia,	suggesting	that	miR-	155	plays	

miRNAs
Expression 
level in PE Function

miR-	106b
miR-	326

↑ Increasing RORγt	mRNA	and	elevating	Th17	cell	
differentiation,	and	decreasing	Foxp3	mRNA	
expression in Treg cells

miR-	363-	3p
miR-	106a
miR-	18b

↑ Increasing	IL-	17	gene	expression	and	high	
production	of	IL-	17a	and	Th17	activity

miR-	20b
miR-	182

↑ High	expression	of	RORγt	and	STAT3,	which	are	
transcription factors of Th17 cells

miRNA-	210 ↑ Suppressing expression of Foxp3 and impairing 
Treg cells function

miR-	155 ↑ induced podocyte apoptosis through increasing in 
IL-	17	production

miR-	320a ↑ Repressing	IL-	4	expression	via	binding	to	3/
untranslated region

TA B L E  2 Dysregulation	of	miRNAs	
related	to	T	cell	subsets	in	PE
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an important role in modulating the immune system during preg-
nancy.	Furthermore,	it	is	essential	for	inducing	Treg	cells	regarding	
achieving tolerance and preventing miscarriage.113	As	 reported	by	
one	study,	in	PE	following	the	maternal	and	fetal	inflammation,	the	
overexpression	of	miR-	155	was	found	in	the	placenta.114	Recently,	it	
has	been	revealed	that	the	upregulation	of	miR-	155	induced	podo-
cyte	apoptosis	through	increasing	in	IL-	17	production.115

8.1.5  |  miR-	320a

The	expression	of	miR-	320a,	which	is	a	tumor	inhibitor	via	decreas-
ing	the	expression	of	several	target	genes,	is	downregulated	in	vari-
ous tumor cells.116	 According	 to	 previous	 research,	miR-	320a	 has	
low	expression	 in	human	non-	small	 lung	cancer	cells	and	acts	as	a	
crucial	 regulator	 in	gastric	 cancer	by	 targeting	Ras-	related	protein	
Rab-	14.117	Overexpression	of	miR-	320	isoforms	in	activated	T	cells	
can	reduce	the	TGF-	β	signaling	pathway	by	suppressing	TGFBR2	and	
Smad2 genes.118	miR-	320a	has	an	important	impact	on	the	invasion	
and proliferation of trophoblast cells.119	Recently,	it	has	been	found	
that	miR-	320a	levels	increase	in	serum	of	PE	patients.120	XI	et	al119 
reported	that	the	upregulation	of	miR-	320a	in	PE	patients	may	con-
tribute	to	the	expansion	of	PE	through	repressing	IL-	4	expression	via	
binding to the 3′untranslated	region,	which	leads	to	the	inhibition	of	
trophoblast proliferation and invasion. The results of this study sug-
gested	that	the	miR-	320a/IL-	4	pathway	may	represent	a	new	thera-
peutic	approach	for	PE.

9  |  CONCLUSION AND PROSPEC T

T	lymphocyte	cells	have	four	main	subsets	including	Th1,	Th2,	Th17,	
and	Treg.	A	normal	association	between	these	T	cells	 is	necessary	
for	preventing	pregnancy	disorders	such	as	PE.	In	recent	years,	stud-
ies	have	examined	 the	variation	of	T-	cell	 functions,	 as	well	 as	 the	
cytokines	 and	 chemokines	 that	 they	 release	 in	 PE.	High	 levels	 of	
adenosine	and	DCR3	or	 low	 levels	of	25	 (OH)	vitamin	D	can	 lead	
to	 imbalances	 in	 the	 Th1/Th2	 and	 Th17/Treg	 ratios,	 and	 eventu-
ally,	cause	PE.	Moreover,	changing	the	expression	of	some	miRNAs	
related to T cells can be a potential molecule for the development 
of	inflammation	and	PE.	In	the	future,	using	some	blockers	for	sup-
pressing cytokine or chemokine receptors on T cells or using some 
siRNAs	for	inhibiting	or	activating	miRNAs	related	to	T	cells	can	af-
fect	the	functions	of	T	cells,	 thus	decreasing	pregnancy	 inflamma-
tion	and	preventing	PE	disease.
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